Wahlteil - GTR
🎓 Prüfungsbereich für Niedersachsen
Weitere Bundesländer & Aufgaben:
Mathe-Prüfungen
Startseite
Austausch & Hilfe:
Prüfungen-Discord
Aufgaben zur Abiturprüfung eA 2023, Wahlteil - GTR. Zum Download hier.
- 1
Aufgabe 1A
Auf einer Autobahn entsteht morgens an einer Baustelle häufig ein Stau, der sich dann wieder vollständig auflöst. An einem bestimmten Tag wird die momentane Änderungsrate der Staulänge für mithilfe der in definierten Funktion mit beschrieben.
Dabei gibt die nach 06: 00 Uhr vergangene Zeit in Stunden und die momentane Änderungsrate der Staulänge in Kilometer pro Stunde an.
Nennen Sie die Zeitpunkte, zu denen die momentane Änderungsrate der Staulänge den Wert null hat.
Begründen Sie anhand der Struktur des Funktionsterms von , dass es keine weiteren solchen Zeitpunkte gibt. (5 BE)
Bestimmen Sie den Zeitpunkt, zu dem die Staulänge am stärksten zunimmt.
Zeigen Sie, dass der zugehörige Wert der momentanen Änderungsrate etwa beträgt. (4 BE)
Geben Sie den Zeitpunkt an, zu dem der Stau am längsten ist.
Begründen Sie Ihre Angabe. (4 BE)
Gegeben ist die in definierte Funktion mit . ist eine Stammfunktion von .
Der Stau entsteht um 06: 00 Uhr.
Begründen Sie, dass die folgende Aussage richtig ist:
Für den Zeitraum von 06: 00 Uhr bis 10: 00 Uhr kann die Staulänge durch die Funktion angegeben werden.
Prüfen Sie, ob sich der Stau um 10: 00 Uhr vollständig aufgelöst hat. (5 BE)
Berechnen Sie die Zunahme der Staulänge von 06:00 Uhr bis 07:30 Uhr und geben Sie für diesen Zeitraum die durchschnittliche Änderungsrate der Staulänge an. (5 BE)
Betrachtet wird die Schar der in definierten Funktionen mit und .
Ermitteln Sie die Koordinaten derjenigen Punkte, die alle Graphen der Schar gemeinsam haben. (4 BE)
Der Graph von und die Gerade durch die Punkte und schließen zwei Flächenstücke ein.
Bestimmen Sie das Volumen des Körpers, der entsteht, wenn man diese beiden Flächenstücke um die -Achse rotieren lässt. (7 BE)
Beurteilen Sie die Gültigkeit der folgenden Aussage: (6 BE)
Es gibt genau einen Wert von , für den der Graph von Tangente an den Graphen von ist.
- 2
Aufgabe 1B
Gegeben ist die Schar der in definierten Funktionen mit
mit .
Jeder Graph der Schar hat genau einen Hochpunkt und genau einen Tiefpunkt.
Der Graph von hat in einem seiner Wendepunkte eine negative Steigung.
Bestimmen Sie diesen Wendepunkt und diese Steigung. (6 BE)
Jeder Graph von hat mit jeder der beiden Koordinatenachsen genau einen gemeinsamen Punkt.
Geben Sie die Koordinaten dieser Punkte an.
Begründen Sie, dass der gemeinsame Punkt mit der -Achse der Tiefpunkt des Graphen von ist. (4 BE)
Für jeden Wert von mit schließt die Gerade durch die beiden Extrempunkte des Graphen von mit den Koordinatenachsen ein Dreieck ein. Die Koordinaten der Hochpunkte sind:
Berechnen Sie denjenigen Wert von , für den dieses Dreieck gleichschenklig ist. (6 BE)
Für jeden Wert von gilt: und und
Geben Sie die Bedeutung dieser Tatsache für die Graphen der Stammfunktionen zu an. (3 BE)
Abbildung 2 zeigt für einen bestimmten Wert von die Graphen von und