In dieser Aufgabe möchtest du zu einem gegebenen Vektor einen orthogonalen Vektor finden. Also suchst du einen Vektor , sodass das Skalarprodukt zwischen und Null ist.
Es lässt sich (zur Vereinfachung) annehmen. Dann erhältst du die Gleichung:
Durch Umformen siehst du, dass gelten muss:
Eine geeignete Wahl ist z.B gegeben durch und . Du erhältst also:
Du kannst jetzt die Probe machen, um nachzurechnen, dass die Vektoren tatsächlich senkrecht aufeinander stehen: