B II
🎓 Prüfungsbereich für Bayern
Weitere Bundesländer & Aufgaben:
Mathe-Prüfungen
Startseite
Austausch & Hilfe:
Prüfungen-Discord
Die Aufgabenstellung findest du hier zum Ausdrucken als PDF.
- 1
In einer Kleinstadt sind drei Handwerksbetriebe und untereinander und mit dem Markt nach dem Leontiefmodell verbunden.
Es gilt folgende Inputmatrix
Bestimmen Sie die vollständige Input-Output-Tabelle, wenn ME, ME und ME produzieren.
Wgen eines technischen Defekts kann der Betrieb nicht mehr an den Markt liefern. Der Betrieb erhöht seine Marktabgabe auf ME und der Betrieb senkt seine Marktabgabe auf ME. Berechnen Sie, wie viel die einzelnen Betriebe in diesem Fall produzieren.
Im Rahmen einer Marktanalyse wird der Produktionsvektor
mit , betrachtet. Bestimmen Sie die Marktabgaben der einzelnen Betriebe in Abhängigkeit von und ermitteln Sie das Intervall der für sinnvollen Werte. Berechnen Sie außerdem, für welchen Wert von die Summe der Marktabgaben den Maximalwert annimmt, und bestimmen Sie diesen Maximalwert.
- 2
In einem kartesischen Koordinatensystem des sind die Punkte und sowie die Geraden und
mit gegeben.
Geben Sie die besondere Lage der Geraden im Koordinatensystem in Abhängigkeit von an.
Untersuchen Sie die gegenseitige Lage der Geraden und in Abhängigkeit von und geben Sie gegebenenfalls die Koordinaten des Schnittpunktes an.
Für wird die Ebene durch die Gerade und den Punkt festgelegt, welcher nicht auf liegt (Nachweis nicht erforderlich!).
1. Bestimmen Sie je eine Parameter- und eine Koordinatengleichung der Ebene .
[ Mögliches Ergebnis: ]
2. Zeigen Sie, dass die Gerade in der Ebene liegt.
3. Fertigen Sie eine Skizze an, aus der die gegenseitige Lage der Ebene , der Geraden
und sowie der Punkte und erkennbar ist. Verwenden Sie kein
Koordinatensystem.
4. Die Punkte und bilden ein Parallelogramm (siehe Skizze).
Bestimmen Sie die Koordinaten von und überprüfen Sie, ob das Parallelogramm
in der Ebene liegt.